In machine learning, LOOCV stands for leave-one-out cross validation. Assuming that the dataset of an ML project comprises n examples (rows), we split the dataset into n subsets and perform n iterations of training/testing. In each iteration, n-1 examples are used as training data and only 1 example is used the testing subset. This process ... Read more

stratified cross validation

Stratified cross validation is a data validation technique which is used when splitting the ML dataset into k subsets, of which k-1 subsets are used as training subsets (folds) and one (1) is used as the test subset (fold). This process is repeated k times. Stratified cross validation uses stratified sampling in the dataset, in ... Read more